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A new integrated Bayesian framework for making quantitative assessments, predictions,
and risk analyses of shrimp (Pandalus borealis) stock development is constructed. A bio-
mass dynamic model, based on the logistic function but including an explicit term for cod
predation, suggests that the quantity of shrimp consumed by cod could equal that taken by
the fishery. The model proved superior to an alternative model in its ability to estimate pa-
rameters central to the assessment; the alternative model subsumed cod predation as part of
an overall population growth effect without a time trend. Two series of shrimp biomass in-
dices, catch, cod biomass estimates, cod consumption estimates, and prior distributions of
model parameters provided information to the models. Process and observation errors were
incorporated simultaneously using a state-space modelling framework. A Bayesian ap-
proach was used to construct posterior probability distributions of model parameters and
derived variables relevant for management advice, including quantification of future risk
of transgressing reference points in relation to alternative management options.
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Introduction

Annual landings of northern shrimp (Pandalus borealis) in

the North Atlantic increased from about 100 000 t in the early

1980s to about 400 000 t in 2002. Although shrimp are now

one of the most important target species in these waters,

little progress has been made in developing a standardized

predictive tool for stock assessment (cf. Stefánsson et al.,

1994; Cadrin and Clark, 1999; Hvingel and Kingsley,

2000; Koeller et al., 2000; ICES, 2001; NAFO, 2001).

Management advice for most shrimp stocks in the North

Atlantic is basically formulated by qualitative assessment

of trends in various indices of stock condition in response

to the catch history (Koeller et al., 2000; ICES, 2001;

NAFO, 2001). Typically, biomass estimates and length com-

positions from research surveys, plus series of commercial

catch rates, constitute themain data source, but additional ob-

servations may also be considered, such as predator abun-

dance and temperature. Advice is given as an annual Total

Allowable Catch (TAC) or as a statement about the
1054-3139/$32.00 � 2005 International Cou
sustainability of current fishing practice as authorized by

the assessment board. One recent extension of the qualitative

assessment procedure is the ‘‘Traffic-light’’ approach (Ko-

eller et al., 2000). This multi-indicator system uses a system-

atized list of available indicators whose values are

qualitatively categorized as red (bad), yellow (neither bad

nor good), or green (good). A summation of the status of

all the listed indicators provides an overall status of the stock,

which is then used as guidance for the next year’s harvest

strategy. For either of the qualitative assessment types, the

method of deriving the advice is not explicitly stated, and

the uncertainty associated with the process is not quantified.

Such methods lack predictive rigour, including formal state-

ments of uncertainty, and are therefore not suited to quantita-

tive comparisons between alternative management options.

A quantitative assessment may be reached through con-

struction of mathematical models describing stock dynam-

ics and their links to data and ancillary information.

Following the ideas of Punt and Hilborn (1997), the first

step in the construction of an assessment framework is to
ncil for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
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specify alternative hypotheses. In this paper we explore lo-

gistic biomass models because on the basis of the data nor-

mally available for shrimp stock assessments, they seem

suitable. Additional models can be added to the assessment

framework described here, to account for model uncertain-

ty. Process and observation errors are incorporated using

a state-space modelling framework (Schnute, 1994), and

Bayesian inference (Congdon, 2001) is used to estimate

probability distributions of model parameters.

Age-structured population models that account in great

detail for age-dependent growth, growth-dependent recruit-

ment to the fishery, and age-specific fishing and natural mor-

tality are now standard tools for assessing most fish stocks.

However, shrimp have no permanent hard parts to accumu-

late annual layers, so ages cannot be measured. Age distribu-

tions have to be constructed indirectly by some type of

modal analysis of length distributions (e.g. Macdonald and

Pitcher, 1979), but the results are dependent on estimates

of growth rate, which generally cannot be extracted from

the data and have to be assumed. This is particularly true

for the relatively slow-growing shrimp of northern waters

and especially for the important larger size classes. The

use of standard VPA software (e.g. the Lowestoft VPA suite:

http://www.cefas.co.uk) to assess shrimp stocks has not been

successful (Savard et al., 1991; ICES, 2001; NAFO, 2001).

Length-based models are currently not used for shrimp stock

assessment (Fournier et al., 1991; Quinn et al., 1998).

Models without demographic structure are an alternative.

Such models are usually of a stock-production type (Pella

and Tomlinson, 1969), and they describe stock dynamics

simply in terms of rates of change of total biomass, rather

than by details of individual, age-specific growth and mor-

tality (see Hilborn and Walters, 1992, for a review of pro-

duction models). However, natural mortality is thought to

be at least as important as fishing mortality in the dynamics

of shrimp stocks, and this limits the application of tradition-

al fishery models, which assume natural mortality to be

constant and/or partly a function of stock density over

time. Explicit factors in natural mortality, e.g. predation

and influences of the physical environment, should be con-

sidered when constructing shrimp stock assessment models.

Several species of fish and marine mammal prey on

shrimp (Magnússon and Pálsson, 1991a; Pedersen and Ri-

get, 1993; Grundwald, 1998; Nilssen et al., 2000). Atlantic

cod (Gadus morhua) cooccur with northern shrimp, are bot-

tom-feeding predators, and can attain high biomass densi-

ties, qualities that give them the potential to be

a controlling predator (Lilly et al., 2000, and references

therein). The rapid development of the West Greenland

shrimp fisheries during the 1970s is thought to be connected

to a major decline in the cod stock in that area; shrimp fish-

eries off the Canadian east coast appear to have, similarly,

thrived after the collapse of the northern cod stocks in

NAFO Divisions 2JC 3KL (Lilly et al., 2000). In the

Barents Sea, cod are estimated to consume 3e4 times as

much shrimp as is taken by the fishery (NAFO, 2001), and
in northern Icelandic waters consumption estimates since

1983 range from 0.25 to 4.6 times the catches (H. Björnsson,

M. R. I. Reykjavı́k, pers. comm.). Therefore, for several

shrimp stocks, predation by cod may constitute a dominating

component of mortality and should be considered for explic-

it inclusion in any shrimp stock assessment model. Other

predators of shrimp may also be important for particular

stocks, and could be included as well if their effect generates

a sufficiently strong signal, and if data are available.

The physical environment also affects shrimp popula-

tions (Anderson, 2000; Koeller, 2000) and may be the cause

of the rapid changes in abundance seen in some stocks

(Apollonio et al., 1986; Anderson, 2000). However, at

this stage of the modelling, environmental effects were

not considered as explicit variables.

This paper presents an integrated framework for assess-

ment and management of a shrimp stock that can use all

the available information on the stock dynamics, provide

realistic estimates of the uncertainty associated with the as-

sessment conclusions, and convey the information in a us-

able form to fishery managers.

Model development

Modelling framework

The models were built in a state-space framework (see, for

example, Schnute, 1994; Meyer and Millar, 1999, and

references therein). This time-series method offers straight-

forward implementation of process and observation error,

and great flexibility in the mathematical construction ap-

proximating stock dynamics and dataestock relations.

The state-space conception of a stock-dynamic model re-

gards a series of unobserved state values as defining the

stock trajectory through time. States are related to one an-

other and to the data by simultaneous, usually stochastic,

equations. The models were therefore defined in terms of

a set of parameters (q), the values of which defined the dy-

namics of the shrimp stock.

The posterior distribution for the parameters of the model,

pðqjdataÞ, given a joint prior distribution, p(q), and the

likelihood of the data, pðdatajqÞ, is determined using

Bayes’ (1763) theorem:

pðqjdataÞfpðdatajqÞpðqÞ:

An overview of the entire model is given in the Appendix.

In applying Bayes’ equation to the present problem, the

posterior probability distribution of q is derived by Monte-

CarloeMarkov-Chain (MCMC) sampling methods (see

Congdon, 2001). The programming framework WinBUGS

v.1.3, made available by the Medical Research Council

and the Imperial College of Science, Technology and Med-

icine in England (http://www.mrc-bsu.cam.ac.uk/bugs;

Gilks et al., 1994; Spiegelhalter et al., 2000), provided

a means of specifying and analysing a Bayesian model,

http://www.cefas.co.uk
http://www.mrc-bsu.cam.ac.uk/bugs/
http://icesjms.oxfordjournals.org/
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including selection and implementation of appropriate algo-

rithms; for numerical integration WinBUGS uses ‘‘Metrop-

olis-Hastings within Gibbs sampling’’ (Gilks et al., 1993,

1996; see also www.mrc-bsu.cam.ac.uk/bugs/).

State equations

The basic equation was a generalization of the logistic

model of population growth (Pella and Tomlinson, 1969):

dB

dt
ZBr

�
1�

�
B

K

�m�1�
; ð1Þ

where B is the biomass, K the carrying capacity, and r is the

intrinsic rate of growth. Parameter m is a shape parameter

for the stock-recruitment curve: a value of 2 gives the ordi-

nary logistic, or Schaefer (1954), trajectory. High values of

m imply that density-dependent reductions in population

growth rate become important only at high stock levels.

A discrete form of this model, modified to include fishing

mortality and predation by cod, and parametrization in

terms of MSY (Maximum Sustainable Yield) rather than

r (intrinsic growth rate) (cf. Fletcher, 1978) described the

state transition from time t to time tC 1:

BtC1ZBt �Ct �Ot

ClMSY
Bt

K

�
1�

�
Bt

K

�m�1�
; lZ

mm=ðm�1Þ

m� 1
; ð2Þ

where K is the carrying capacity, or the equilibrium stock

size in the absence of both predation and fishing, Bt is the

stock biomass at time t, MSY is the annualized value of

the instantaneous maximum sustainable yield available to

cod and fishes together, Ct is the catch taken by the fishery,

and Ot is the consumption by cod between time t and time

tC 1.

Absolute biomass estimates provided by population-

dynamic models are liable to great uncertainty if no explicit

information is available to scale the biomass indices to real

stock size. Therefore, for management purposes it is desir-

able to work with biomass on a relative scale in order to

cancel out the uncertainty of the ‘‘catchability’’ parameter

(the scaler). This was accomplished by dividing Equation

(2) by BMSY, the biomass that produces MSY. The variabil-

ity (ratio of the inter-quartile range to the median) of esti-

mated biomass ratios was about 67% lower than that of

absolute estimates of B. This reparameterization also re-

duced autocorrelation in the chains of values sampled by

the Gibbs sampler and thus hastened convergence to the

posterior distribution (Meyer and Millar, 1999). Finally,

a term for the process error was applied, and the state equa-

tion took the form
PtC1Z

�
Pt �

�
CtCOt

BMSY

�

C
mMSYPt

BMSYðm� 1Þ

�
1�Pm�1

t

m

��
expðntÞ; ð3Þ

where Pt is the stock biomass relative to biomass at MSY

(PtZ Bt/BMSY) in year t. The process error, n, is normally,

independently and identically distributed with mean 0 and

variance sn
2. The consumption, Ot, was taken as a Holling

type III functional-response function that includes prey-

switching (Holling, 1959):

OtZcodt
VmaxP

2
t

P2
tCP2

50%

; ð4Þ

where Ot is the total consumption in year t, Vmax is the max-

imum consumption of prey per predator (kg kg�1) reached at

large prey biomass, and P50% is the prey biomass index at

which the consumption is half the maximum. Parameter

codt is the biomass of cod at time t. This function predicts

a sigmoidal response of predation rate (per unit of predator

biomass) to increasing prey biomass: at intermediate bio-

mass the consumption per predator increases linearly with

prey biomass, but at low prey biomass it approaches 0, and

at high biomass it has an asymptotic maximum as the preda-

tor becomes satiated. Shrimp are not regarded as the primary

forage for cod if fish, e.g. capelin (Mallotus villosus; Mag-

nússon and Pálsson, 1991b; Berenboim et al., 2000) or Arctic

cod (Boreogadus saida) is available. The abundance of

shrimp relative to that of other forage species may therefore

be expected to reach a certain level for cod to switch to it.

Under the basic stock-dynamic model, the biomass at

MSY is given by

BMSYZKm�1=ðm�1Þ; ð5Þ

and the na€ıve MSY itself is given by

MSYZ
Kr

l
: ð6Þ

In the absence of predation, these are also the MSY

available to a fishery and the corresponding standing stock.

Under prey-biomass-dependent predation, the fishable yield

will be less if the predator switches to this prey at prey bio-

mass levels below BMSY. However, the standing stock giv-

ing maximum fishable yield may also be altered (reduced)

if prey-switching would occur below BMSY, because it

might in that case pay to fish the stock to a lower biomass,

to discourage the predator from switching and thereby to re-

duce predation. The maximum fishable yield will, however,

always be equal to at least the MSY as defined above, mi-

nus cod consumption at BMSY, and will never occur at stock

levels higher than BMSY.

http://www.mrc-bsu.cam.ac.uk/bugs/
http://icesjms.oxfordjournals.org/
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Table 1. Input data series: catch and standardized cpue index of the

fishery, shrimp biomass index from research survey, VPA and sur-

vey-based cod biomass, and estimated consumption of shrimp by

cod based on stomach sampling.

Year

Catch

(’000 t)

Cpue

(index)

Survey

(index)

Cod biomass

(’000 t)

Consumption

(’000 t)

1955 5.0 1 729.3

1956 5.0 1 662.5

1957 5.0 1 286.1

1958 5.0 1 333.1

1959 5.0 1 294.3

1960 5.0 1 589.2

1961 5.0 1 591.9

1962 5.0 1 459.7

1963 5.0 1 448.6

1964 5.0 1 457.0

1965 5.0 1 348.4

1966 5.0 1 386.9

1967 5.0 1 241.8

1968 5.0 877.5

1969 5.0 535.9

1970 8.6 392.7

1971 9.4 334.9

1972 9.7 227.5

1973 12.6 136.8

1974 22.0 85.8

1975 37.9 62.9

1976 50.1 1.0 133.0

1977 42.1 0.9 122.4

1978 34.5 0.7 120.3

1979 35.2 0.6 135.3

1980 46.0 0.8 106.9

1981 44.8 0.7 103.6

1982 44.6 0.9 135.1

1983 46.8 0.8 87.5

1984 43.4 0.8 52.7

1985 54.5 0.8 30.6

1986 63.1 0.8 41.4

1987 63.7 1.0 231.0

1988 60.3 0.7 216.8 307.0

1989 65.7 0.6 199.6 191.6 84.8

1990 69.4 0.6 213.6 57.5 8.5

1991 75.9 0.6 146.3 7.4 1.0

1992 86.8 0.6 202.0 8.4 2.3

1993 75.6 0.6 232.7 0.8

1994 76.6 0.6 249.5 0.3

1995 70.7 0.7 201.1 0.1

1996 69.2 0.7 211.9 0.8

1997 64.5 0.7 185.3 0.6

1998 66.1 0.7 263.1 0.3

1999 76.5 0.8 251.5 0.5

2000 79.9 0.9 301.0 1.3

2001 85.0 0.9 304.3 5.8

2002 100.0 1.1 393.3 5.0
Observation equations

Two independent series of shrimp biomass, one of shrimp

catches, one of cod biomass, and data on consumption of

shrimp by cod provided the data input to the model

(Table 1). The two series of shrimp biomass indices were

a standardized and combined series of annual commercial

vessel catch rates for the years 1976e2002, cpuet (Hvingel

et al., 2000; Hvingel, 2002); and a trawl-survey biomass in-

dex for 1988e2002, survt (Carlsson et al., 2000; Kanne-

worff and Wieland, 2002). These indices were scaled to

true biomass by catchability constants, qc and qs. Lognor-

mal observation errors, u and k, were applied, giving

cpuetZqcBMSYPt expðutÞ; for t˛ð1976;1977;.;N� 1Þ;
cpueNZqcBMSYPN expð1:5uNÞ; ð7Þ

survtZqsBMSYPt expðktÞ; for t˛ð1989;1990;.;NÞ;
surv1988ZqsBMSYP1988 expð1:5k1988Þ; ð8Þ

where NZ 2002. The error terms, u and k, are normally,

independently and identically distributed, with mean

0 and variance su
2 and sk

2. The error for the final year, N,

of the cpue index was assumed to be 1.5 times the error

for the rest of the series, because this data point is an inter-

im one based on fishery data until October (the annual as-

sessment takes place in November). Likewise, the first

year of the survey was assigned a 50% larger error than

the rest of the series, to allow for the process of learning

to conduct the survey.

Total reported catch in NAFO Subarea 1CDivision 0A

1970e2002 (Hvingel, 2002) was used as yield data

(Table 1). The fishery being without major discarding

problems or variable misreporting, reported catches were

entered into the model as error-free.

Predation was entered into the model with two sets of

data. The first was a time-series of cod biomass, codt. It

was constructed as follows: absolute estimates of stock

size for West and East Greenland combined were available

from VPA up to 1992 (ICES, 1996). For the period

1982e1992 the West Greenland components could be esti-

mated using the annual relative East/West survey-based

biomass indices (mean and standard error: 0.6G 0.24),

and the West Greenland series was extended back in time

by multiplying the total biomass estimates for earlier years

by 0.6, the 1982e1992 average West Greenland fraction.

The absolute estimates for 1993 and later were obtained

from the survey indices by applying the 1990e1992
mean ratio of the VPA estimate to the survey biomass, as-

suming a constant relationship between them.

The second series was a partial series of shrimp consump-

tion (Table 1). The estimates of annual consumption of

shrimp by cod, Oobst , were based on stomach samples for

the years 1989e1992 (Table 26 of Grundwald, 1998). These
estimates were linked to the dynamics of the shrimp stock

through Equation (4) and the cod biomass series. An

http://icesjms.oxfordjournals.org/
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observation error term, t, normally, independently and iden-

tically distributed with mean 0 and variance st
2, was applied:

OobstZcodt
VmaxP

2
t

P2
tCP2

50%

expðttÞ: ð9Þ

Priors

Bayesian philosophy considers that an observer maintains

a model, perhaps mental or conceptual, of reality that is

subject to being modified (updated) by observations. As

a quantitative version of this, Bayesian statistics considers

that quantitative observations (data) can be used to update

pre-existing probability distributions of the values of pa-

rameters defining a quantitative model. In such a discrete

updating process, the prior distributions pre-date and are

therefore independent of the study that furnishes the data

on which the updating is based. The prior distribution for

a parameter should incorporate all information already

available, but if none can be identified, a low-information

‘‘reference’’ prior (Kass and Wasserman, 1996) is used.

The following paragraphs describe the prior distributions

constructed for the parameters of this model and the reason-

ing underlying them.

There is usually little information about the pristine size

of a stock, but it is inescapable that some assumption about

it is made. It is commonly assumed that B1Z K, i.e. that

the stock was at carrying capacity when records started

(corresponding to P1Z 2 as a prior on P1 for a logistic

model). This assumption is questionable under any circum-

stances, but especially so when, as in the present case, the

stock had already been fished for some years before the

start of the observations and was also subject to predation.

Instead, we used a much less informative lognormally dis-

tributed prior on P1. For the model without a predation ef-

fect, we chose P1w log N(0.44,0.2)1, a wide distribution

with a mode at about 1.5; in other words, we considered

that the stock might have been fished down halfway from

carrying capacity to MSY level by the time record-keeping

started. In the model with predation included, we chose

P1w log N(�0.05,0.2). This is also a wide distribution,

but it has a smaller mode at approximately 0.9, acknowl-

edging the likely effect of a large cod stock before the start

of the data series (S. A. Horsted, Pinngortitaleriffik, Green-

land Institute of Natural Resources, Nuuk, pers. comm.).

The prior distributions for the error terms associated with

the biomass indices were assigned inverse gamma distribu-

tions (the gamma distribution, G(r,m), is defined by:

mrxr
�1

e�mx/C (r); xO 0), because error standard deviations

typically follow this kind of distribution. Existing analyses

indicated an estimated CV of around 10% for the cpue se-

ries (Hvingel et al., 2000) and about 17% for the survey

1 The symbol ‘‘w’’ is to be interpreted as ‘‘is distributed as’’.
series (Carlsson et al., 2000). Their standard deviations

were therefore given inverse gamma distributions with

modes at 0.10 and 0.17. The error parameter for the cod

consumption series, Ot, was assigned an inverse gamma

prior with a mode corresponding to a CV of around 25%,

as a result of the expected larger uncertainty associated

with the construction of the series.

The data could not be expected to contain much informa-

tion about Vmax. An informative prior was therefore con-

structed using estimates of growth and food conversion

coefficients for cod fed to satiation in laboratory experi-

ments (Björnsson and Steinarsson, 2002). Assuming an av-

erage cod population structure for the years 1975e1989
(ICES, 1996), a level for Vmax was estimated as 3 kg-

shrimp kg-cod�1 y�1. The prior was given a relatively tight

distribution of the form Vmaxw N(3,0.1).

Low-information or reference priors were given to MSY,

qc, qs, m, K, st, and P50%, because we had little or no infor-

mation on how their probability distributions might look.

MSY was given a uniform prior between 0 and

1 000 000 t, the upper limit sufficiently high not to truncate

the posterior distribution.

The catchabilities qc and qs are confounded with the car-

rying capacity K. A uniform distribution was therefore not

uninformative, and a prior distribution uniform on a log

scale was preferred as a reference prior (Gelman et al.,

1995; Punt and Hilborn, 1997; McAllister and Kirkwood,

1998). A similar distribution was used as a slightly infor-

mative prior for K, to discourage sampling of very high, un-

realistic, values.

A uniform prior for m would not be uninformative with

respect to the location of BMSY relative to K. To make a ref-

erence prior for the ratio BMSYK
�1 in terms of m, an ap-

proximate function was used for the conversion. No

analytical expression for m in terms of BMSY/K exists, so

m as a function of BMSYK
�1 in the interval

0.37! BMSYK
�1! 0.63 was approximated by

mZ a exp(b(BMSYK
�1)c) with appropriate values of

a (0.1817), b (5.1174), and c (1.0938). BMSYK
�1 was

then assigned a uniform distribution on the interval

0.37e0.63. Values of m! 1 correspond to stock trajecto-

ries with non-asymptotic lower limbs and were considered

unrealistic; they equate to values of BMSYK
�1 below ap-

proximately 0.37. The upper truncation point was chosen

to make the prior symmetric around BMSYK
�1Z 0.5.

P50% will have an important effect in setting the preda-

tion rate, V(P), because Vmax is supposed to be relatively

well determined. A prior for P50% that was approximately

non-informative with respect to the predation rate was con-

structed by using a rearranged version of the predation rate

function (see Equation (4)):

P50%-priorZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V #

maxP
#2

VðPÞ#
�P#2

s
; ð10Þ
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giving V(P)# a uniform distribution between 0 and 3, setting

V#maxZ 3, and simulating P to vary between 0 and carry-

ing capacity by giving P# a uniform distribution 0e2.

Convergence diagnostics

Conclusions based on an MCMC output depend on the as-

sumption that the chain of sampled values for each param-

eter can be considered an unbiased random sample from the

target distribution, i.e. the posterior. A chain is usually se-

rially correlated, and at the start is affected by the initial

values assigned to parameters, which are not random sam-

ples from the posterior distributions. The influence of initial

values is avoided by discarding a long stretch (several thou-

sand iterations) at the start of the chain, retaining values

only after sampling is expected to have converged to statio-

narity, and autocorrelation is reduced by retaining only ev-

ery n(th) member of the chain, n typically being of order

102. To check that these measures were effective, the

Bayesian Output Analysis (BOA) programme v.0.5.0 by

Brian Smith (http://www.public-health.uiowa.edu/boa/)

was used in S-Plus 2000 (http://www.mathsoft.com/splus).

A number of parallel chains with different starting points

and random number seeds were analysed by the Brooks,

Gelman, and Rubin convergence diagnostic (Gelman and

Rubin, 1992; Brooks and Gelman, 1998) to evaluate if

the samples could be considered to have arisen from the tar-

get distribution. A stationarity test (Heidelberger and

Welch, 1983) was applied to individual chains. If evidence

of non-stationarity is found, iterations were discarded from

the beginning of the chain until the remaining chain passed

the test. Raftery and Lewis (1992) tests for convergence to

the stationary distribution and estimation of the run-lengths

needed to accurately estimate quantiles were used, and fi-

nally the Geweke convergence diagnostic was applied (Ge-

weke, 1992).

Model check

In order to check whether the model was a good fit to the

data, different goodness-of-fit statistics were computed.

First, we calculated the simple difference between each ob-

served data point and its trial value in each MCMC sam-

pling step. The summary statistics of the distributions of

these residuals indicated, by their central tendency, whether

the modelled values were biased with respect to the obser-

vations. Second, the overall posterior distribution was in-

vestigated for potential effects of model deficiencies by

comparing each data point with its posterior predictive dis-

tribution (Posterior Predictive Checks; Gelman et al., 1995,

1996). Simulated sets of observed data, datarep, were drawn

from the sampling distributions for the observations as out-

put from the model. Therefore, datarep has distribution

Pðdatarep
����dataobsÞZ

ð
P
�
datarep

��q�P�q��dataobs�dq: ð11Þ
In this expression, the term P
�
datarep

��q� represents the

sampling of observations from the distributions set up in

the model to define them, and the term PðqjdataobsÞ repre-
sents the sampling of the parameters of those distributions

from their own posterior distributions. If the model fitted

the observed data well, the observed data should, collec-

tively, be a ‘‘likely’’ drawing from its simulated distribu-

tion, i.e. the observed data and the replicate data should

look alike. The degree of similarity between the original

and the replicate data points was summarized in a vector

of p-values, calculated as the proportion of n simulations

in which a sampling of the posterior distribution for an ob-

served parameter exceeded its input value:

p-valueZ
1

n

XN
jZ1

Iððdatarepj;qjÞ �
�
dataobs;qj

�
Þ; ð12Þ

where I(x) is 1 if x is true, 0 if x is false. Values close to 0 or

1 in the vector p-value would indicate that the observed

data point was an unlikely drawing from its posterior

distribution.

Third, the Conditional Predictive Ordinate (CPO; Gel-

fand and Dey, 1994) was calculated as a harmonic mean

of the likelihood:

CPOiZ

"
1

n

XN
jZ1

1

p
�
datai

��qj�
#�1

; ð13Þ

where n is the number of MCMC samples. This statistic in-

dicated, by small values, whether the relevant data points

were a poor fit to the model.

Derived parameters and risk calculations

Probability distributions of quantities such as mortality or

other statistics relevant for the assessment/management

procedure, but not readily available as model parameters,

may also be generated by the MCMC sampling process if

they can be derived from the existing parameters of the

model. This is done simply by adding the appropriate equa-

tions to the model. The mortality caused by cod predation

and the fishery, Z, is scaled to ZMSY (the combined fishing

and predation mortality that yields MSY) for the same rea-

sons as relative biomass was used instead of absolute. The

equations added for generating posterior distributions of the

Z-ratio were

Z-ratiotZ
Zt

ZMSY

Z
�ln

�Bt � ðCtCOtÞ
Bt

�
MSY

BMSY

: ð14Þ

As the MCMC sampler (when converged) is drawing

samples from the probability distribution of model parame-

ters or derived quantities, the probability of their being
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smaller or larger than certain reference values may readily

be derived. Such reference levels may be of stock or fishery

status defined as guidelines of management, e.g. to comply

with the concept of the precautionary approach (FAO,

1996). As stated above, ZMSY as defined here is sustainable,

and corresponds to a stock size equal to or greater than that

at which the fishable yield is maximized. The Z-ratio there-

fore gives a conservative view of the prevailing manage-

ment regime.

For example, to determine the risk of transgressing a ref-

erence limit in 10 years under a given regime of catch and

cod predation, one merely adds the values pertaining to the

management scenario under investigation to the data input

series of catch and cod biomass. The risk is then simply the

relative frequency with which the MCMC-sampled values

transgress the reference points. Using biomass, B, as an ex-

ample, the risk of biomass in year t being below the refer-

ence can be calculated by:

risktZ
1

n

XN
jZ1

I
�
referencej �Btj

�
; ð15Þ

where Bij is the j(th) sampled value of the state Bt, and

referencej is the corresponding value of the reference bio-

mass. Note that the reference need not be a ‘‘point’’ but

could be a probability distribution, which more realistically

reflects the inevitable uncertainty about the reference. I(x)

is 1 if x is true, 0 if x is false, and n is the number of sam-

ples drawn.

Alternative model runs

Two model versions were investigated. Model 1 had no

predation by cod and was fitted to the data series on

cpue, survey, and catch. This model was similar in concept

to that fitted by maximum likelihood methods in Hvingel

and Kingsley (2000). Model 2 corresponded to the full

model with predation, as defined above. It used the addi-

tional data sets on consumption and cod stock biomass.

In each run, BUGS was set up to do 550 000 iterations, re-

cording only every 50th to compensate for serial correlation
within the chains of some of the sampled parameter values.

The run-time was about 1e2 h on a 1400-MHz laptop, de-

pending on the model and the management questions inves-

tigated. The first 1000 samples of the recorded chain were

discarded for ‘‘burn-in’’, leaving 10 000 samples as the final

result. Convergence diagnostics were calculated for the pa-

rameters listed in Table 2 to confirm that the model and sam-

pling set-up was appropriate to ensure convergence.

Results

Model 1 (without cod predation)

Judged from the flat shape of the generated posterior distri-

bution, the data did not contain much information about K

(Figure 1). A mode was evident at around 1.5 million tonnes,

but the prior used, truncated at 6 million tonnes, interfered

with the posterior. Fisheries data might determine MSY rea-

sonably well, but often cannot specify whether the yield

comes from a stock that is close to or far from its carrying

capacity: determining this requires a long-range extrapola-

tion from available data on yield and stock size. We had

no strong evidence for what the upper limit of the carrying

capacity might be, so instead of discarding this model right

away, we changed the upper truncation point of the K-prior

to an arbitrarily chosen value of 15 million tonnes. This

would still interfere with the posterior for K, but increasing

the upper limit further did not seem to influence the posteri-

ors of the other parameters in the model significantly.

Model 1 was then able to produce a reasonable simula-

tion of the observed data (Figure 2). The probabilities of

obtaining a more extreme observation than those realized

in the two data series on stock size were in the range of

0.06e0.5, i.e. the observations did not lie in the tails of

their posterior distributions. For the cpue series, the data

point of 1987 was suggested by a low CPO to be a relatively

poor fit to the model. Minor problems in capturing the ex-

treme catch rates of 1979 and 1982 were also indicated by

these points having relatively large residuals and small

CPOs. The survey series was generally less well estimated;

the 1991 value had the largest residual and smallest CPO.
2013
Table 2. Model 1: correlations among parameter estimates (n.s. means not significant at pZ 0.01).

K MSY P1 PNC1 BMSYK
�1 qc qs su sn

MSY 0.09

P1 n.s. n.s.

PNC1 �0.21 0.39 0.08

BMSYK
�1 n.s. �0.09 n.s. 0.06

qc �0.61 �0.26 n.s. �0.09 �0.05

qs �0.61 �0.26 n.s. �0.09 �0.05 1.00

su 0.04 n.s. n.s. n.s. n.s. n.s. �0.04

sn n.s. n.s. n.s. n.s. n.s. 0.08 0.09 �0.26

sk n.s. n.s. n.s. �0.05 n.s. n.s. n.s. n.s. �0.06
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Figure 1. Prior and posterior probability density distributions of model 1 and model 2 parameters (symbols are explained in text).
ry 27, 2013
Some of the parameters showed high linear correlations

(Table 2). The catchabilities (qc and qs) were negatively

correlated with the parameter for carrying capacity, K,

and to some extent with MSY. MSY and K were only

slightly positively correlated.

For the parameters m (represented by BMSYK
�1), K, and

P1, the posterior distributions tended to approximate the in-

put priors (Figure 1). The posterior for MSY was positively

skewed and showed a mode at 90 000 t and upper and lower

quartiles at 82 700 t and 187 000 t. The catchabilities, qs
and qc, showed marked peaks at 0.045 and 0.00019, respec-

tively, but had relatively wide posterior distributions. The

estimated CV of the observed cpue series had a median
at about 8.4%, and for the survey series at 14.9%. The pro-

cess error, n, had a median of 10.3%.

Model 2 (cod predation effect included)

Entering a predation effect in themodel only hadminor influ-

ence on themodel diagnostics. The probabilities of obtaining

a more extreme observation set than the realized ones ranged

from 0.07 to 0.5. For the cpue series it was still the peaks in

1979, 1982, and 1987 that had the largest log-residuals and

smallest CPOs. Similarly, the greater variability of the sur-

vey series was, as before, less well captured, with the values
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of 1991 being the most obvious deviation. Large correlations

between parameters still prevailed (Table 3).

However, precision of the key parameters had improved

substantially. Not only did the posterior medians of the

MSY differ substantially between the two models but a de-

cline in its relative inter-quartile range (range/median),

from 86% to 22%, was also observed. K now had a more
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Figure 2. Comparison of observed and model estimated values:

cpue and survey stock biomass indices and shrimp consumption

by cod, and corresponding estimates by models 1 and 2 (inter-quar-

tile range of the posteriors). Estimates of relative stock develop-

ment in the future and prior to the data series are shown in the

scale of the cpue indices only for improved presentation.
peaked posterior distribution with a distinct mode around

740 000 t (Figure 1). The catchabilities, qs and qc, were

larger and also more precisely estimated than in model 1,

with modes at 0.52 and 0.0022, respectively. The posterior

distribution for BMSYK
�1, approximately uniform in the ab-

sence of predation, changed to favour values at the lower

end of its range. The prior of the initial state, P1, was still

not updated.

The estimated CVs of the observed biomass indices, k and

u, were similar to those estimated by model 1. However, the

mode of the posterior for the process error, n, had, in line

with the observations noted above, decreased from 0.094

to 0.071. The posterior for the CV of the observed cod

biomass series, st, markedly updated the prior (Figure 1),

with a clear mode at 0.28.

The parameter principally determining the cod predation

rate, P50%, was also markedly updated with a posterior

showing a mode at 3.63 (Figure 1). As expected, there

was no information in the data about Vmax, and the posterior

copied the prior.

Model comparison

The goodness-of-fit statistics did not provide clear advice on

model selection. However, there were large differences in the

precision of parameters estimates (Figures 1 and 2). The pro-

cess error was reduced by more than one-fourth by the inclu-

sion of the predation effect, and the relative inter-quartile

ranges of MSY and K went down by about two-thirds.

How well the stock-production curve is defined by the

data may be visualized by plotting the stock size and corre-

sponding production calculated directly from the observed

biomass indices. This was done by applying the MCMC-

sampled catchabilities to the actual index values, to obtain

biomass estimates. Production was calculated by subtract-

ing biomass in the current year from biomass in the next,

then adding catch and if necessary estimated predation. Al-

though only a minor difference is seen in the estimated
ruary 27, 2013
Table 3. Model 2: correlations among parameter estimates (n.s. means not significant at pZ 0.01).

K MSY Vmax P1 PNC1 P50% BMSYK
�1 qc qs su sn sk

MSY 0.65

Vmax n.s. n.s.

P1 0.10 0.12 n.s.

PNC1 0.20 0.50 n.s. 0.20

P50% 0.09 0.40 0.07 0.26 0.29

BMSYK
�1 n.s. 0.13 n.s. n.s. 0.31 �0.16

qc �0.69 �0.62 n.s. �0.25 �0.44 n.s. �0.14

qs �0.68 �0.62 n.s. �0.25 �0.44 n.s. �0.14 0.99

su 0.03 n.s. n.s. n.s. �0.05 0.03 n.s. �0.05 �0.06

sn 0.29 0.36 n.s. 0.07 0.29 0.16 0.14 �0.32 �0.32 �0.25

sk �0.03 �0.04 n.s. n.s. �0.04 n.s. �0.02 0.03 0.03 0.03 �0.08

st n.s. �0.02 n.s. n.s. n.s. n.s. n.s. 0.05 0.05 n.s. �0.09 n.s.
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rent year from biomass in the next, then adding catch and if necessary estimated predation. The generalized stock-recruitment curve shown

was based on the median of the posteriors of the parameters MSY and m.
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median stock-recruitment curve, the larger variability of the

model 1 estimates was apparent (Figure 3).

The two models produced different simulations of likely

stock biomass trajectories back in time before 1976, when

the cpue series starts (Figure 2). Having only the time-se-

ries of catch available as input data for that period, model

1 predicts a more or less constant stock size around the

high level of the 1976 value. Model 2, using both catch

and cod data, estimates the shrimp biomass during the pe-

riod of high cod abundance in the 1960s to have been at

about one-third of its 1976e2002 level. This scenario

agrees with the general belief that the stock in those years

was at a lower level (S. A. Horsted, pers. comm.).
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Figure 4. Annual median biomass ratio (B/BMSY) and mortality ra-

tio (Z/ZMSY), 1956e2002, of model 2-estimated posterior probabil-

ity distributions.
Therefore, model 2 was chosen for use in the assessment

process, and subsequent comments refer to that model.

Cod consumption

The estimated annual consumption of shrimp by cod in the

years 1956e2002 was in the range 0 t to about 120 000 t

(Figure 2), of the same order of magnitude as the catches

taken by the fishery. Estimated consumption has declined

since 1960 (Figure 2), in step with a decline in cod abun-

dance. A short-lived resurgence of the cod stock in the

late 1980s caused consumption estimates to increase. The

cod disappeared in the early 1990s, and estimates of con-

sumption dropped to 0.

Stock development

The shrimp stock has been exposed since the 1950s to two

different environmental regimes: one with high and the

other with low cod abundance. The model indicates that

the stock dynamics have responded to the difference. The

trajectory of the median estimate of ‘‘biomass ratio’’

(Pt Z BtBMSY
�1 ) plotted against ‘‘mortality ratio’’ (ZtZMSY

�1 ;

Figure 4) starts in 1956 at half the optimum biomass ratio

(Z1), and at a mortality ratio considerably higher than 1.

The stock maintained itself in this region during the years

when cod were abundant. When the cod stock declined in

the late 1960s and predation pressure was lifted (Figure 2),

shrimp stock biomass increased and eventually began

cycling in the left upper corner of the graph (Figure 4) dur-

ing the current regime of scarce cod. From the early 1970s,

the estimated median biomass ratio ranged from about 0.96

to 1.70, and the probability that it had been below the op-

timum level was small for most years, i.e. it seemed likely

that the stock had been at or above its MSY level through-

out the modern fishery. A steep decline in cpue was noted

in the late 1980s and early 1990s following a short-lived
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resurgence of the cod stock, and the median estimate of bio-

mass ratio dipped just below the optimum in 1990 and 1991

(Figure 4). The stock has since increased.

Production potential

The median estimate of the maximum annual production

surplus available equal to the fishery and cod (MSY) was

estimated to be 100 600 t. The risk function relating to

the probability of exceeding MSY to the combined removal

by fishery and cod predation is given as the integral of this

distribution (Figure 5).

Prediction and risk

The probabilities of transgressing chosen references in re-

sponse to different management options (optional catch se-

ries of 80, 90, 100, 110, and 120 thousand tonnes) were

derived for a 10-year period assuming that the cod stock

would remain at its current level. For demonstration, a bio-

mass reference was chosen as equal to BMSY and a mortality

reference equal to ZMSY. Note that the references used here

are not single points, but probability distributions of possi-

ble values.

Increasing the catches will (not surprisingly) increase the

risks of overfishing and of drive the biomass to levels below

its most productive, and for each catch option the estimate of

theserisks increases with time (Figure 6). Even for catch lev-

els at 80 000 t, considerably below estimated median MSY,

risk estimates will increase with time alone as a result of in-

creasing uncertainty in the predictions of stock size.

Discussion

The basic ideas embedded in applied production models are

the concept of carrying capacity (K ) and Maximum Sus-

tainable Yield (MSY). Resources (food, space, etc.) avail-

able to the individual in the ecosystem are limited.

Density-dependent effects will become effective as the pop-

ulation grows, and along with the growth potential of the

stock decide the form of the dome-shaped surplus-production
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Figure 5. The cumulative probability of exceeding MSY.
curve of this class of model. MSY and K are not in reality

constant over time, but vary with changes in a host of envi-

ronmental factors. When modelled with a time-invariant

value, these parameters represent averages over time of

their temporary values. The dynamics of the stock under

the influence of fishing and predation are also responding

to variation in these basic parameters, which is therefore

subsumed in the process error.

Parameter estimation

In the Bayesian framework, fundamental absence of infor-

mation in the data will yield posteriors as a copy of the in-

put priors. For the data to carry information on all the

parameters of any such model, the biomass should vary

widely both above and below BMSY. If the available data

do not span these conditions, problems in fitting stock-pro-

duction models by any method can be expected (Hilborn

and Walters, 1992).

The plot of the estimated stock-production function and

the underlying data points (Figure 3) suggest that the avail-

able time-series of indexed stock biomass for the West

Greenland shrimp stock does not span the range from

0 to K. It looks as though the stock size has been fluctuating

above BMSY between 1976 and 2002. For these reasons in

particular, the shape parameter, m, could not be well deter-

mined. However, in the applied parametrization using rela-

tive biomass instead of absolute, both the starting point and

the location of the maximum of the stock-production func-

tion are fixed (maximum at B/BMSYZ 1), so the suggested
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Figure 6. Risk of exceeding ZMSY and of driving the stock below

BMSY by maintaining optional annual catch levels of 80 000e

120 000 t y�1 during the period 2003e2012, assuming the cod

stock stays at the current (2002) low level.
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regression line in Figure 3 may not be as speculative as it

might look at first sight.

Even though the conditions for estimation of some pa-

rameters are not optimal, it may still be possible to obtain

good estimates of parameters relevant for management.

Fortunately, MSY is the easiest single parameter to esti-

mate. If the range of biomass includes BMSY, good esti-

mates of MSY can be obtained independently of other

parameters. In some cases, this can be done even if the

range of biomass merely approaches BMSY from one side

or the other, as seen in this case. Model 2 yields estimates

of production of stock sizes close to BMSY, and of a large

part of the upper range of possible stock sizes (Figure 3),

and the estimated posterior distribution of MSY is reason-

ably tight (Figure 1).

More uncertainty was associated with the estimation of

the carrying capacity, K. An informative prior for q or K it-

self to help in scaling absolute stock size could improve

conditions, but such prior knowledge was not available.

When compared with model 1 results, the inclusion of pre-

dation increased the degree to which the prior probability

distributions of K were updated by the Bayesian fitting pro-

cess and decreased the variance of the resulting posterior

distribution (Figures 1 and 2).

The posterior for the initial biomass, P1, tended to approx-

imate the input priors whether or not these were uninforma-

tive (Figure 1). P1 is the biomass level of 1955, i.e. 20 years

before data on relative stock size were available. Therefore,

signals from the data about stock biomass before 1976would

be reflected in overall trends in that series rather than just de-

fining the initial state. Altering the prior for P1 would have

some effect on the first couple of years of biomass estimates,

but after that, series conditioned on different priors would

merge. Therefore, the first couple of years in the estimated

stock trajectory is likely to be biased and should be inter-

preted with caution. The estimates of other parameters

were only marginally affected by altering the P1-prior,

even with the use of a prior uniform between 0 and 3.

We conclude that the lack of contrast in the stock dynam-

ics in this case is not an impediment to obtaining reasonable

estimates of parameters relevant to management. However,

an adaptive management programme, such as investigating

stock response to higher quotas, would enable us further to

explore the production potential of the stock and to make

firmer statements on its response to different exploitation

levels. The security of adaptive management is, however,

dependent on having confidence in the basic model of stock

dynamics. MSY is estimated in the absence of fishing

(which is usual) and predation. Fishing is assumed to be un-

der management control and therefore capable of being set

at an appropriate level of exploitation, so given adequate in-

formation about stock status and dynamics, optimal man-

agement is achievable. Cod predation on shrimp

apparently needs to be allowed for in the management of

the shrimp stock. A fishable yield equal to the calculated

MSY minus the estimated predation at BMSY is available,
and if a larger fishable yield is available, it is available

from a standing stock smaller than BMSY. Managing the

stock relative to the estimated BMSY therefore appears to

be conservative. However, predation is not controlled by

the managers of the shrimp stock, and therefore introduces

an element of unpredictability to the system. Furthermore,

the cod stock itself may be subject to management with

its own objectives; a joint objective for the two stocks

may also be possible given adequate analysis of the social

and economic, as well as the biological, factors.

Predation by cod

The biological interactions between species introduced in

model 2 involve predation by cod and its resulting primary

effect on the mortality of shrimp. The secondary factor of

predation on the growth of the predator was in this case

not included. Cod are opportunistic predators with a wide

food spectrum, and the dynamics of a single prey popula-

tion, e.g. shrimp, is likely cancelled out by variations in

the wide selection of other prey populations, unless it is

part of a major directed change in the ecosystem. Also,

the cod biomass data series entered would presumably al-

ready include any effect of such a feedback process.

In this study a significant improvement in the precision

of estimates of principal parameters was gained by the in-

clusion of the cod predation effect in model 2, presumably

mainly because predation provides an explanation of fea-

tures of the biomass trajectory that otherwise are hard to ex-

plain: the boom in cod predation in the late 1980s coincides

with the drop in cpue, the moderate levels of cod predation

in the 1970s coincide with the fairly stable biomass at that

time, and low predation in the 1990s coincides with in-

creasing biomass.

The model estimated the medians of the posterior distri-

butions of the annual consumption by cod in the years

1956e2002 to range from 200 t to about 100 000 t. This

is of the same order of magnitude as the catches taken by

the fishery (Figure 2). Although it is well known that cod

eat shrimp, little information could be found for indepen-

dent validation of the intake quantities that this model esti-

mated. The effect of cod predation could well be large.

However, the mechanics behind the shrimpecod interac-

tion are not fully known, so an apparent effect of cod on

the shrimp stock could also perhaps be attributed to oppo-

site, but independent, stock responses to the same shifts

in environmental conditions (Lilly et al., 2000).

In the light of the investigations by Grundwald (1998),

the assumed Omax at 3 kg kg
�1 y�1 looks to be of the right

order of magnitude. Grundwald (1998) calculated a daily

ration of 0.4e0.9% body weight per day for 1989e1992.

Shrimp made up 12e37% of the diet, implying that an av-

erage kg of cod ate 0.2e1.2 kg of shrimp per year. In the

Barents Sea, annual point estimates of predation rate during

the period 1985e2001 were 0.1e0.4 kg-shrimp kg-cod�1

(calculation based on ICES, 2002). The estimates of P50%
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had a median of 3.8, meaning that shrimp densities well

above the estimated carrying capacity are needed before

predation rate can reach even half its maximum. This sug-

gests that, for this system, we are only dealing with the low-

er limb of the sigmoidal functional response, and that

within a narrower range of shrimp stock sizes (maybe for

most practical cases), cod predation rate could be consid-

ered linearly related to shrimp abundance.

The increased precision of model 2 parameter estimates

reduces uncertainties in projections of future developments

of stock biomass (Figure 2), at least during the current re-

gime of extreme scarcity of cod where the error contribu-

tion from the estimation of predation is small. Consumption

could probably be estimated with more precision, and con-

fidence in the precision itself could be augmented if more

direct estimates of cod predation rates under various scenar-

ios of cod and shrimp abundance were available. Therefore,

should the cod stock enter a rebuilding phase, it would be

desirable to initiate, perhaps at some threshold stock level,

a programme of direct estimation of consumption rates to

improve information in this area and thus the predictive ca-

pability of the model.

Advantage of model

The model combines the flexibility of state-space modelling

and Bayesian methods, and offers a quantitative alternative

to current models used in northern shrimp stock assess-

ments. Among its advantages are (i) the state-space struc-

ture permits inclusion of both process and observation

errors, and allows for time-variant equations of population

dynamics and of data relations to the modelled process.

Therefore, the model may easily be tailored to account

for particular observations in individual years such as an

atypical recruitment variation, a temporary change in dis-

carding practice, or, as used in the current model, increased

observation error for the survey and cpue series in certain

years. (ii) Bayesian methods can include ancillary knowl-

edge in a model as priors and aid parameter estimation in

data-scarce situations (i.e. in most marine population dy-

namics modelling). This potential was not explored to its

full extent in the present modelling exercise, because

most priors were constructed as non-informative. However,

all in all, the model, and the conclusions drawn from it,

showed low sensitivity to changes in prior distributions, in-

dicating that the data were sufficiently informative. (iii) As

the full distributions of model parameters or derived quan-

tities are estimated, it is technically straightforward to

quantify the risk associated with different management op-

tions and so provide a quantitative decision framework for

the fishery managers.
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Stefánsson, G., Skúladóttir, U., and Pétursson, G. 1994. The use of
a stock production type model in evaluating the offshorePandalus
borealis stock of north Icelandicwaters, including the predation of
northern shrimp by cod. ICES Document, CM 1994/K: 25. 13 pp.

Appendix

Overview of stochastic model of shrimp stock biomass dy-

namics incorporating predation by Atlantic cod to be solved

using Bayesian inference. The t indices time-steps in years,

tZ (1,.,N ); ‘‘w’’ means ‘‘distributed as’’; N(m,s2) is the

normal distribution with mean m and variance s2. Corre-

spondingly, log N is the lognormal distribution, G the gam-

ma distribution, and U is the uniform distribution. Other

parameters are explained in the text.

Observables, data

(1) cpuetZqcBMSYPt expðutÞ
(2) survtZqsBMSYPt expðktÞ
(3) OtZcodt

VmaxP
2
t

P2
tCP2

0:5

expðttÞ
(4) codtZcodt
(5) CtZCt
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Unobservables, q

Biomass states

(6) Ptwlog Nðlnð0:95Þ; 0:2Þ; tZ1

(7) PtC1Z

�
Pt �

�
CtCOt

BMSY

�
C

mMSY Pt

BMSYðm� 1Þ�
1� Pm�1

t

m

��
expðntÞ; tZð2;.; nÞ

Priors for parameters defining stochastic behaviour

(8) 1=s2uwGð2:5; 0:03Þ
(9) 1=s2kwGð4; 0:1125Þ
(10) 1=s2twGð0:001; 0:001Þ
(11) 1=s2nwGð5; 0:22Þ

Priors for parameters relating biomass indices to real

biomass

(12) log qswUð � 10; 1Þ
(13) log qcwUð � 15; 1Þ

Priors for parameters defining predation rate

(14) VmaxwNð3; 0:1Þ
(15)
P50%Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3P#2

VðPÞ#
� P#2

s
;

where P#wUð0; 2Þ and VðPÞ#wUð0; 3Þ

Priors for parameters of stock production

(16) mZ0:1817 exp

�
5:1174

�
BMSY

K

�1:0938�
;

where
BMSY

K
wUð0:37; 0:63Þ

(17) MSYwUð35; 1000Þ
(18) logðKÞwUðlnð100Þ; lnð6000ÞÞ

Joint prior density, p(q)

(19) pðqÞZp
�
K;MSY;m; qc; qs;Vmax;P50%; s

2
u; s

2
k;

s2t; s
2
n

�
pðP1Þ

Yn
tZ2

p
�
Pt

��Pt�1;K;MSY;m; s2n
�

Likelihood, p(datajq)
(20) pðdatajqÞZ

Yn
1

p
�
cpuet; survt; codt;Ot

��Pt; qc; qs;

s2u; s
2
k; s

2
t

�
Joint posterior probability density, p(qjdata)

(21) pðqjdataÞfpðqÞpðdatajqÞ ðBayes theoremÞ
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